DOI: 10.31428/10317/772
|View full text |Cite
|
Sign up to set email alerts
|

Meshing methods and adaptive algorithms in two and three dimensions for solving closed electromagnetic problems by means of the finite element method

Abstract: A3.1.2. Discretización de la Formulación Débil A3.1.3. Aplicación de las Condiciones de Contorno A3.1.4. Transformación del Autosistema. Obtención de la Constante de Propagación A3.2. Análisis de Cavidades Resonantes A3.2.1. Obtención de la Ecuación Integral mediante el Método de Galerkin A3.2.2. Discretización de la Formulación Débil A3.2.3. Aplicación de las Condiciones de Contorno ÍNDICE iv A3.2.4. Resolución del Autosistema

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 110 publications
(148 reference statements)
0
1
0
Order By: Relevance
“…There are four main methods used for mesh adaptation [54][55][56][57], which are the h-refinement, the r-refinement, the p-refinement and the m-refinement [58]. In the h-refinement, addition/removal of mesh nodes and edge swapping techniques are used (for triangular meshes, for example, the longest edge bisection and the regular split techniques [59]), resulting in an overall increase/decrease in the number of unknowns of the existing mesh. In the r-refinement, the total number of existing nodes remains the same, with the only difference that the mesh nodes are reallocated to achieve optimum resolution within a fixed number of degrees of freedom.…”
Section: Element Quality Improvement Algorithm Toolmentioning
confidence: 99%
“…There are four main methods used for mesh adaptation [54][55][56][57], which are the h-refinement, the r-refinement, the p-refinement and the m-refinement [58]. In the h-refinement, addition/removal of mesh nodes and edge swapping techniques are used (for triangular meshes, for example, the longest edge bisection and the regular split techniques [59]), resulting in an overall increase/decrease in the number of unknowns of the existing mesh. In the r-refinement, the total number of existing nodes remains the same, with the only difference that the mesh nodes are reallocated to achieve optimum resolution within a fixed number of degrees of freedom.…”
Section: Element Quality Improvement Algorithm Toolmentioning
confidence: 99%