Laboratory-scale solid-phase denitrification (SPD) reactors for nitrate removal were constructed by acclimating activated sludge with poly (L-lactic acid) (PLLA) having weight-average molecular weights (Mw) of 9,900, 12,000, and 45,100 g mol −1 . A good nitrate removal rate (3.5-5.3 mg NO3 − -N g [dry wt] −1 h −1 ) was found in the reactor containing PLLA of 9,900 g mol −1 , whereas the other two reactors with the higher Mw PLLA showed low nitrate removal efficiency. Microbial community dynamics in the low Mw PLLA-acclimated reactor were studied by 16S rRNA gene-targeted PCR-denaturing gradient gel electrophoresis and quinone profiling. Nonmetric multidimensional scaling analyses of these data sets revealed a marked population shift during acclimation of the SPD reactor with low Mw PLLA. The 16S rRNA gene clone library and culture-dependent analyses showed that bacteria belonging to the family Comamonadaceae predominated and played the primary role in denitrification in the PLLA-using reactor; however, none of the bacterial isolates from the reactor degraded PLLA. These results suggest that the nitrate removal property of the PLLA-using SPD reactor is attained through the bioavailability of hydrolysates released abiotically from the solid substrate.