Layered double hydroxides
(LDH)-derived mixed metal oxides (MMO)
are considered as promising solid sorbents for CO2 capture
in the temperature range of 350–500 °C. Accordingly, they
find potential applications in the sorption enhanced water–gas
shift process and in removal of CO2 from hot flue gas/syngas.
Numerous strategies have been explored to improve the CO2 capture property of LDH-derived MMO under the conditions of intended
applications. These strategies include novel sorbents by replacement
of cations and intercalation of organic anions on Mg–Al LDH,
development of LDH-based hybrid/composite materials, optimization
of synthesis conditions to control particle size, and method development
for different types of alkali impregnation. The present work involves
synthesis of a Mg–Al LDH/multiwalled carbon nanotubes (MWNTs)
composite and explores its applicability for CO2 capture
under dry conditions. Additionally, K2CO3 is
impregnated onto the composite to study the effect of alkali promotion.
The K2CO3-promoted Mg–Al LDH/MWNT composite
exhibited a fresh adsorption capacity of 1.12 mmol g–1 at 300 °C under a total pressure of 1 bar. The enhanced CO2 sorption capacity of composites in comparison with their
pristine counterparts can be attributed to improved particle dispersion.
Further, the K2CO3-promoted Mg–Al LDH/MWNT
composite shows an average working capacity of 0.81 mmol g–1 over 10 cycles in the temperature range of 300–400 °C.
The deactivation model provides excellent predictions of the experimental
CO2 breakthrough curves obtained with various sorbents.
The values of model parameters are comparable with those reported
in the literature.