A flexible strategy is exploited to insert Zn nanoparticles into the pores of highly stable 3D network of carbon ultrathin films (P‐Zn/C) that can effectively localize the postformed Zn nanoparticles, thereby solving the problem of structural degradation, and thus achieve improved anode performance. A maximum capacity of 657.3 mA h g−1 at a current density of 200 mA g−1 after 50 cycles is achieved for P‐Zn/C. Even at a high current density of 2 A g−1, a capacity of 653 mA h g−1 is maintained after 1000 cycles, indicating that it could be a promising anode for lithium ion batteries. By comparing the capacitive and diffusion contribution qualitatively and quantitatively, the result reveals that the enhanced electrochemical performance mainly originates from the pseudocapacitance storage mechanism.