Nowadays water scarcity represents a threat for human and living beings. Therefore, to satisfy the demands of people for clean and safe water, new technologies for wastewater treatment have been developed. Thus, photocatalysis has emerged as a green chemical approach for such treatment. In this context, new polyoxometalate (POM)/polymer composites with relevant photocatalytic properties have been developed via an easy and cheap photopolymerization process upon mild visible light irradiation at 405 nm. This fruitful association between POM and polymer allowed the obtention of shaped materials facile to collect and reuse at the end of the photocatalytic treatment avoiding then the usual timeconsuming regeneration methods. The prepared photocomposites displayed excellent photocatalytic performance for the removal of bisphenol-A from water under different sources of irradiation. Hence, 100%, 88%, and 50% of this model compound were decomposed by the phosphomolybdic composite under just 90 min of UV lamp, solar and LED@375 nm irradiations, respectively. The effectiveness of these developed photocatalysts towards the degradation of other organic compounds, as well as the degradation mechanism based on the generation of highly reactive chemicals such as • OH radicals promoting the degradation were already reported. Bisphenol-A degradation pathway and the identification of the photoproducts were discussed using mass spectroscopy technique. Therefore, this paper highlighted the photocatalytic efficiency of the new manufactured materials for the photodegradation of the bisphenol-A, thus expanding their application fields, under different sources of irradiation and under pure solar irradiation which make their applications more interesting and less energy consuming.