Topology optimization (TO) has been a useful engineering tool over the last decades. The benefits of this optimization method are several, such as the material and cost savings, the design inspiration, and the robustness of the final products. In addition, there are educational benefits. TO is a combination of mathematics, design, statics, and the finite element method (FEM); thus, it can provide an integrative multi-disciplinary knowledge foundation to undergraduate students in engineering. This paper is focused on the educational contributions from TO and identifies effective teaching methods, tools, and exercises that can be used for teaching. The result of this research is the development of an educational framework about TO based on the CDIO (Conceive, Design, Implement, and Operate) Syllabus for CAD engineering studies at universities. TO could be easily adapted for CAD designers in every academic year as an individual course or a module of related engineering courses. Lecturers interested in the introduction of TO to their courses, as well as engineers and students interested in TO in general, could use the findings of this paper.