2023
DOI: 10.1609/aaai.v37i5.25760
|View full text |Cite
|
Sign up to set email alerts
|

Meta-Auxiliary Learning for Adaptive Human Pose Prediction

Abstract: Predicting high-fidelity future human poses, from a historically observed sequence, is crucial for intelligent robots to interact with humans. Deep end-to-end learning approaches, which typically train a generic pre-trained model on external datasets and then directly apply it to all test samples, emerge as the dominant solution to solve this issue. Despite encouraging progress, they remain non-optimal, as the unique properties (e.g., motion style, rhythm) of a specific sequence cannot be adapted. More general… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 40 publications
0
0
0
Order By: Relevance