Intrusion detection in network systems is a critical challenge due to the ever-increasing volume and complexity of cyber-attacks. Traditional methods often struggle with high-dimensional data and the need for real-time detection. This paper proposes a comprehensive intrusion detection method utilizing a novel wrapped feature selection approach combined with a long short-term memory classifier optimized with the whale optimization algorithm to address these challenges effectively. The proposed method introduces a novel feature selection technique using a multi-layer perceptron and a hybrid genetic algorithm-particle swarm optimization algorithm to select salient features from the input dataset, significantly reducing dimensionality while retaining critical information. The selected features are then used to train a long short-term memory network, optimized by the whale optimization algorithm to enhance its classification performance. The effectiveness of the proposed method is demonstrated through extensive simulations of intrusion detection tasks. The feature selection approach effectively reduced the feature set from 78 to 68 features, maintaining diversity and relevance. The proposed method achieved a remarkable accuracy of 99.62% in DDoS attack detection and 99.40% in FTP-Patator/SSH-Patator attack detection using the CICIDS-2017 dataset and an anomaly attack detection accuracy of 99.6% using the NSL-KDD dataset. These results highlight the potential of the proposed method in achieving high detection accuracy with reduced computational complexity, making it a viable solution for real-time intrusion detection.