Enterprises in today's networked economy face numerous information management challenges, both from a process management perspective as well as a decision support perspective. While there have been significant relevant advances in the areas of business process management as well as decision sciences, several open research issues exist. In this paper, we highlight the following key challenges. First, current process modeling and management techniques lack in providing a seamless integration of decision models and tools in existing business processes, which is critical to achieve organizational objectives. Second, given the dynamic nature of business processes in networked enterprises, process management approaches that enable organizations to react to business process changes in an agile manner are required. Third, current state-of-the-art decision model management techniques are not particularly amenable to distributed settings in networked enterprises, which limits the sharing and reuse of models in different contexts, including their utility within managing business processes. In this paper, we present a framework for decision-enabled dynamic process management that addresses these challenges. The framework builds on computational formalisms, including the structured modeling paradigm for representing decision models, and hierarchical task networks from the artificial intelligence (AI) planning area for process modeling. Within the framework, interleaved process planning (modeling), execution and monitoring for dynamic process management throughout the process lifecycle is proposed. A serviceoriented architecture combined with advances from the semantic Web field for model management support within business processes is proposed.