2022
DOI: 10.48550/arxiv.2205.15100
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Meta Representation Learning with Contextual Linear Bandits

Abstract: Meta-learning seeks to build algorithms that rapidly learn how to solve new learning problems based on previous experience. In this paper we investigate meta-learning in the setting of stochastic linear bandit tasks. We assume that the tasks share a low dimensional representation, which has been partially acquired from previous learning tasks. We aim to leverage this information in order to learn a new downstream bandit task, which shares the same representation. Our principal contribution is to show that if t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?