Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aerobes require dioxygen (O2) to grow; anaerobes do not. But nearly all microbes — aerobes, anaerobes, and facultative organisms alike — express enzymes whose substrates include O2, if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O2 utilization has wide-ranging effects on microbes: aerobes typically have larger genomes, encode more O2-utilizing enzymes, and tend to use different amino acids in their proteins. Here we show that these effects permit high-quality prediction of O2 utilization from genome sequences, with several models displaying >70% balanced accuracy on a ternary classification task wherein blind guessing is only 33.3% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genome sequence content — e.g. triplets of amino acids —perform about as well as intensive annotation-based algorithms, enabling the rapid processing of global-scale sequence data to predict aerobic physiology. To demonstrate the utility of efficient physiological predictions we estimated the prevalence of aerobes and anaerobes along a well-studied O2 gradient in the Black Sea, finding strong quantitative correspondence between local chemistry (O2:sulfide concentration ratio) and the composition of microbial communities. We therefore suggest that statistical methods like ours can be used to estimate, or “sense,” pivotal features of the environment from DNA sequencing data.
Aerobes require dioxygen (O2) to grow; anaerobes do not. But nearly all microbes — aerobes, anaerobes, and facultative organisms alike — express enzymes whose substrates include O2, if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O2 utilization has wide-ranging effects on microbes: aerobes typically have larger genomes, encode more O2-utilizing enzymes, and tend to use different amino acids in their proteins. Here we show that these effects permit high-quality prediction of O2 utilization from genome sequences, with several models displaying >70% balanced accuracy on a ternary classification task wherein blind guessing is only 33.3% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genome sequence content — e.g. triplets of amino acids —perform about as well as intensive annotation-based algorithms, enabling the rapid processing of global-scale sequence data to predict aerobic physiology. To demonstrate the utility of efficient physiological predictions we estimated the prevalence of aerobes and anaerobes along a well-studied O2 gradient in the Black Sea, finding strong quantitative correspondence between local chemistry (O2:sulfide concentration ratio) and the composition of microbial communities. We therefore suggest that statistical methods like ours can be used to estimate, or “sense,” pivotal features of the environment from DNA sequencing data.
Aerobes require dioxygen (O 2 ) to grow; anaerobes do not. However, nearly all microbes—aerobes, anaerobes, and facultative organisms alike—express enzymes whose substrates include O 2 , if only for detoxification. This presents a challenge when trying to assess which organisms are aerobic from genomic data alone. This challenge can be overcome by noting that O 2 utilization has wide-ranging effects on microbes: aerobes typically have larger genomes encoding distinctive O 2 -utilizing enzymes, for example. These effects permit high-quality prediction of O 2 utilization from annotated genome sequences, with several models displaying ≈80% accuracy on a ternary classification task for which blind guessing is only 33% accurate. Since genome annotation is compute-intensive and relies on many assumptions, we asked if annotation-free methods also perform well. We discovered that simple and efficient models based entirely on genomic sequence content—e.g., triplets of amino acids—perform as well as intensive annotation-based classifiers, enabling rapid processing of genomes. We further show that amino acid trimers are useful because they encode information about protein composition and phylogeny. To showcase the utility of rapid prediction, we estimated the prevalence of aerobes and anaerobes in diverse natural environments cataloged in the Earth Microbiome Project. Focusing on a well-studied O 2 gradient in the Black Sea, we found quantitative correspondence between local chemistry (O 2 :sulfide concentration ratio) and the composition of microbial communities. We, therefore, suggest that statistical methods like ours might be used to estimate, or “sense,” pivotal features of the chemical environment using DNA sequencing data. IMPORTANCE We now have access to sequence data from a wide variety of natural environments. These data document a bewildering diversity of microbes, many known only from their genomes. Physiology—an organism’s capacity to engage metabolically with its environment—may provide a more useful lens than taxonomy for understanding microbial communities. As an example of this broader principle, we developed algorithms that accurately predict microbial dioxygen utilization directly from genome sequences without annotating genes, e.g., by considering only the amino acids in protein sequences. Annotation-free algorithms enable rapid characterization of natural samples, highlighting quantitative correspondence between sequences and local O 2 levels in a data set from the Black Sea. This example suggests that DNA sequencing might be repurposed as a multi-pronged chemical sensor, estimating concentrations of O 2 and other key facets of complex natural settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.