Skeletal muscle insulin resistance is a main defect in type 2 diabetes (T2D), which is associated with impaired function and content of glucose transporter type 4 (GLUT4). GLUT4 overexpression in skeletal muscle tissue can improve glucose homeostasis. Therefore, we created an engineered muscle construct (EMC) composed of GLUT4overexpressing (OEG4) cells. The ability of the engineered implants to reduce fasting glucose levels was tested in diet-induced obesity mice. Decrease and stabilization of basal glucose levels were apparent up to 4 months after implantation. Analysis of the retrieved constructs showed elevated expression of myokines and proteins related to metabolic processes. In addition, we validated the efficiency of OEG4-EMCs in insulin-resistant mice. Following high glucose load administration, mice showed improved glucose tolerance. Our data indicate that OEG4-EMC implant is an efficient mode for restoring insulin sensitivity and improving glucose homeostasis in diabetic mice. Such procedure is a potential innovative modality for T2D therapy.