Metabolism of BGS and dBG to BG explains the unexpected high efficacy of these compounds in potentiating the antitumor activity of BCNU in the athymic mouse model. The faster and more effective suppression of tumor MGMT by dBG and its greater efficacy, as compared with BGS, also correlates with a more rapid accumulation of BG in blood after dBG than after BGS administration, which results in faster and complete suppression of MGMT in Daov xenografts. Thus, metabolism of dBG and BGS to BG appears to be the determining factor for continuous and prolonged suppression of MGMT activity, and that near complete suppression of such activity during and following BCNU administration is required for the higher efficacy of treatments. Similarly, the failure of CMBG to suppress tumor MGMT to the same extent as BGS, in spite of their similar ED50 values, could be attributed to the metabolism of this compound mainly by pathways other than conversion to BG.