The skin, especially the pilosebaceous unit composed of sebaceous glands and hair follicles, can synthesize androgens de novo from cholesterol or by locally converting circulating weaker androgens to more potent ones. As in other classical steroidogenic organs, the same six major enzyme systems are involved in cutaneous androgen metabolism, namely steroid sulfatase, 3beta-hydroxy-steroid dehydrogenase, 17beta-hydroxysteroid dehydrogenase, steroid 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase, and aromatase. Steroid sulfatase, together with P450 side chain cleavage enzyme and P450 17-hydroxylase, was found to reside in the cytoplasm of sebocytes and keratinocytes. Strong steroid sulfatase immunoreactivity was observed in the lesional skin but not in unaffected skin of acne patients. 3beta-hydroxysteroid dehydrogenase has been mainly immunolocalized to sebaceous glands, with the type 1 being the key cutaneous isoenzyme. The type 2 17beta-hydroxysteroid dehydrogenase isoenzyme predominates in sebaceous glands and exhibits greater reductive activity in glands from facial areas compared with acne nonprone areas. In hair follicles, 17beta-hydroxysteroid dehydrogenase was identified mainly in outer root sheath cells. The type 1 5alpha-reductase mainly occurs in the sebaceous glands, whereby the type II isoenzyme seems to be localized in the hair follicles. 3alpha-hydroxysteroid dehydrogenase converts dihydrotestosterone to 3alpha-androstanediol, and the use of 3alpha-androstanediol glucuronide serum level to reflect the hyperandrogenic state in hirsute women may be a reliable parameter, especially for idiopathic hirsutism. In acne patients it is still controversial if 3alpha-androstanediol glucuronide or androsterone glucuronide could serve as suitable serum markers for measuring androgenicity. Aromatase, localized to sebaceous glands and to both outer as well as inner root sheath cells of anagen terminal hair follicles, may play a "detoxifying" role by removing excess androgens. Pharmacologic development of more potent specific isoenzyme antagonists may lead to better clinical treatment or even prevention of androgen-dependent dermatoses.