Abstract:BackgroundThe present study aims to develop a metabolic gene signature to evaluate the survival rate of ovarian cancer (OC) patients and analyze the potential mechanisms of metabolic genes in OC because the difficulty in early detection of OC often leads to poor treatment outcomes.MethodsA non‐negative matrix factorization algorithm was applied to determine molecular subtypes according to metabolism genes. To build a risk prognosis model, least absolute shrinkage and selection operator multivariate Cox analysi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.