The problem of marine noise pollution has a long history. Strong noise (>120 dB re 1 µPa) will affects the growth, development, physiological responses, and behaviors of fish, and also can induce the stress response, posing a mortal threat. Although many studies have reported that underwater noise may affect the survival of fish by disturbing their nervous system and endocrine system, the underlying causes of death due to noise stimulation remain unknown. Therefore, in this study, we used the underwater noise stress models to conduct underwater strong noise (50–125 dB re 1 µPa, 10–22,000 Hz) stress experiments on small yellow croaker for 10 min (short-term noise stress) and 6 days (long-term noise stress). A total of 150 fishes (body weight: 40–60 g; body length: 12–14 cm) were used in this study. Omics (metabolomics and transcriptomics) studies and quantitative analyses of important genes (HPA (hypothalamic–pituitary–adrenal)-axis functional genes) were performed to reveal genetic and metabolic changes in the important tissues associated with the HPA axis (brain, heart, and adrenal gland). Finally, we found that the strong noise pollution can significantly interfere with the expression of HPA-axis functional genes (including corticotropin releasing hormone (CRH), corticotropin releasing hormone receptor 2 (CRHR2), and arginine vasotocin (AVT)), and long-term stimulation can further induce metabolic disorders of the functional tissues (brain, heart, and adrenal gland), posing a lethal threat. Meanwhile, we also found that there were two kinds of death processes, direct death and chronic death, and both were closely related to the duration of stimulation and the regulation of the HPA axis.