Marine sediments are a sink for antibiotic resistance genes (ARGs) and antibiotic-resistant microbes (ARMs). Wastewater discharge into the aquatic environment is the dominant pathway for pharmaceuticals reaching aquatic organisms. Hence, the characterization of ARGs is a priority research area. This baseline study reports the presence of ARGs in 12 coastal sediment samples covering the urban coastline of Kuwait through whole-genome metagenomic sequencing. The presence of 402 antibiotic resistance genes (ARGs) were recorded in these samples; the most prevalent were patA, adeF, ErmE, ErmF, TaeA, tetX, mphD, bcrC, srmB, mtrD, baeS, Erm30, vanTE, VIM-7, AcrF, ANT4-1a, tet33, adeB, efmA, and rpsL, which showed resistance against 34 drug classes. Maximum resistance was detected against the beta-lactams (cephalosporins and penam), and 46% of genes originated from the phylum Proteobacteria. Low abundances of ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli) were also recorded. Approximately 42% of ARGs exhibited multiple drug resistance. All the ARGs exhibited spatial variations. The major mode of action was antibiotic efflux, followed by antibiotic inactivation, antibiotic target alteration, antibiotic target protection, and antibiotic target replacement. Our findings supported the occurrence of ARGs in coastal marine sediments and the possibility of their dissemination to surrounding ecosystems.