Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study compares bio-inspired optimization algorithms for enhancing an ANN-based Maximum Power Point Tracking (MPPT) forecast system under partial shading conditions in photovoltaic systems. Four algorithms—grey wolf optimizer (GWO), particle swarm optimization (PSO), squirrel search algorithm (SSA), and cuckoo search (CS)—were evaluated, with the dataset augmented by perturbations to simulate shading. The standard ANN performed poorly, with 64 neurons in Layer 1 and 32 in Layer 2 (MSE of 159.9437, MAE of 8.0781). Among the optimized approaches, GWO, with 66 neurons in Layer 1 and 100 in Layer 2, achieved the best prediction accuracy (MSE of 11.9487, MAE of 2.4552) and was computationally efficient (execution time of 1198.99 s). PSO, using 98 neurons in Layer 1 and 100 in Layer 2, minimized MAE (2.1679) but had a slightly longer execution time (1417.80 s). SSA, with the same neuron count as GWO, also performed well (MSE 12.1500, MAE 2.7003) and was the fastest (987.45 s). CS, with 84 neurons in Layer 1 and 74 in Layer 2, was less reliable (MSE 33.7767, MAE 3.8547) and slower (1904.01 s). GWO proved to be the best overall, balancing accuracy and speed. Future real-world applications of this methodology include improving energy efficiency in solar farms under variable weather conditions and optimizing the performance of residential solar panels to reduce energy costs. Further optimization developments could address more complex and larger-scale datasets in real-time, such as integrating renewable energy sources into smart grid systems for better energy distribution.
This study compares bio-inspired optimization algorithms for enhancing an ANN-based Maximum Power Point Tracking (MPPT) forecast system under partial shading conditions in photovoltaic systems. Four algorithms—grey wolf optimizer (GWO), particle swarm optimization (PSO), squirrel search algorithm (SSA), and cuckoo search (CS)—were evaluated, with the dataset augmented by perturbations to simulate shading. The standard ANN performed poorly, with 64 neurons in Layer 1 and 32 in Layer 2 (MSE of 159.9437, MAE of 8.0781). Among the optimized approaches, GWO, with 66 neurons in Layer 1 and 100 in Layer 2, achieved the best prediction accuracy (MSE of 11.9487, MAE of 2.4552) and was computationally efficient (execution time of 1198.99 s). PSO, using 98 neurons in Layer 1 and 100 in Layer 2, minimized MAE (2.1679) but had a slightly longer execution time (1417.80 s). SSA, with the same neuron count as GWO, also performed well (MSE 12.1500, MAE 2.7003) and was the fastest (987.45 s). CS, with 84 neurons in Layer 1 and 74 in Layer 2, was less reliable (MSE 33.7767, MAE 3.8547) and slower (1904.01 s). GWO proved to be the best overall, balancing accuracy and speed. Future real-world applications of this methodology include improving energy efficiency in solar farms under variable weather conditions and optimizing the performance of residential solar panels to reduce energy costs. Further optimization developments could address more complex and larger-scale datasets in real-time, such as integrating renewable energy sources into smart grid systems for better energy distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.