DC–DC converters are used in many power electronics applications, such as switching power supply design, photovoltaic, power management systems, and electric and hybrid vehicles. Traditionally, DC–DC converters are linearly modeled using a typical operating point for their control design. Some recent works use nonlinear models for DC–DC converters, due to the inherent nonlinearity of the switching process. In this sense, a standout modeling technique is the Takagi–Sugeno fuzzy exact method due to its ability to represent nonlinear systems over the entire operating range. It is more faithful to system behavior modeling, and allows a nonlinear closed-loop control design. The use of nonlinear models allows the testing of controllers obtained by linear methods to operate outside their linearization point, corroborating with robust controllers for specific applications. This work aims to perform the exact fuzzy Takagi–Sugeno modeling of a buck–boost converter with non-ideal components, and to design a discrete proportional–integral–derivative (PID) controller from the pole cancellation technique, obtained linearly, to test the controller at different operating points. The PID control ensured a satisfactory result compared with the stationary value of the different operating points, but it did not reach the desired transient response. Since the proposed model closely represents the operation of the buck–boost converter by considering the components’ non-idealities, other control techniques that consider the system’s nonlinearities can be applied and optimized later.