In light of the growing popularity of Exploratory Data Analysis (EDA), understanding the underlying causes of the knowledge acquired by EDA is crucial, but remains under-researched. This study promotes for the first time a transparent and explicable perspective on data analysis, called eXplainable Data Analysis (XDA). XDA provides data analysis with qualitative and quantitative explanations of causal and non-causal semantics. This way, XDA will significantly improve human understanding and confidence in the outcomes of data analysis, facilitating accurate data interpretation and decision making in the real world. For this purpose, we present XInsight, a general framework for XDA. XInsight is a three-module, endto-end pipeline designed to extract causal graphs, translate causal primitives into XDA semantics, and quantify the quantitative contribution of each explanation to a data fact. XInsight uses a set of design concepts and optimizations to address the inherent difficulties associated with integrating causality into XDA. Experiments on synthetic and real-world datasets as well as human evaluations demonstrate the highly promising capabilities of XInsight.