A key goal in cosmology in the upcoming decade will be to form a better understanding of the accelerated expansion of the Universe. Upcoming surveys, such as the Vera C. Rubin Observatory's 10-year Legacy Survey of Space and Time (LSST), Euclid and the Square Killometer Array (SKA) will deliver key datasets required to tackle this and other puzzles in contemporary cosmology. With this data, constraints of unprecedented power will be put on different models of dark energy and modified gravity. In this context it is crucial to understand how screening mechanisms, which hide the deviations of these theories from the predictions of general relativity in local experiments, affect structure formation. In this work we approach this problem by using a combination of analytic and numerical methods to describe chameleon screening in the context of cosmic voids. We apply a finite element method code, SELCIE, to solve the chameleon equation of motion for a number of void profiles derived from observational data and simulations. The obtained results indicate a complex relationship between the properties of cosmic voids and the size of the chameleon acceleration of a test particle. We find that the fifth force on a test particle in a void is primarily related to the depth and the inner density gradient of the void. For realistic void profiles, the obtained chameleon-to-Newtonian acceleration ratios range between a φ /a Newt ≈ 10 −6 − 10 −5 . However, it should be noted that in unusually deep voids with large inner density gradients, the acceleration ratios can be significantly higher. We also discuss the optimal density profiles for detecting the fifth force in the upcoming observational surveys.