Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in: El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription (Received February 4, 2008) Theoretical studies on charge ordering phenomena in quarter-filled molecular (organic) conductors are reviewed. Extended Hubbard models including not only the on-site but also the inter-site Coulomb repulsion are constructed in a straightforward way from the crystal structures, which serve for individual study on each material as well as for their systematic understandings. In general the inter-site Coulomb interaction stabilizes Wigner crystal-type charge ordered states, where the charge localizes in an arranged manner avoiding each other, and can drive the system insulating. The variety in the lattice structures, represented by anisotropic networks in not only the electron hopping but also in the inter-site Coulomb repulsion, brings about diverse problems in low-dimensional strongly correlated systems. Competitions and/or co-existences between the charge ordered state and other states are discussed, such as metal, superconductor, and the dimer-type Mott insulating state which is another typical insulating state in molecular conductors. Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state for example due to the spin-Peierls transition, is considered as well. Distinct situations are pointed out: influences of the coupling to the lattice degree of freedom and effects of geometrical frustration which exists in many molecular crystals. Some related topics, such as charge order in transition metal oxides and its role in new molecular conductors, are briefly remarked.