In the current study, the Fe2O3/biochar nanocomposite was synthesized through a self-assembly method, followed by the immobilization of Pseudomonas putida (P. putida) on its surface to produce the P. putida/Fe2O3/biochar magnetic innovative nanocomposite. The synthesized nanocomposite was characterized using different techniques including X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FT-IR). Then, the efficiencies of this material to remove calconcarboxylic acid (CCA) organic dye, ammonium ions (NH4+), and phosphate ions (PO43−) from industrial wastewater were analyzed. The removal rates of up to 82%, 95%, and 85% were achieved for CCA dye, PO43−, NH4+, respectively, by the synthesized composite. Interestingly, even after 5 cycles of reuse, the prepared nanocomposite remains efficient in the removal of pollutants. Therefore, the P. putida/Fe3O4/biochar composite was found to be an actual talented nanocomposite for industrial wastewater bioremediation.