A sample of 46 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy and metallicity profiles, as well as other morphological measurements. The entropy profiles are computed to larger radial extents than in previous Chandra cluster sample analyses. We find that the iron mass fraction measured in the inner 0.15R 500 shows a larger dispersion across the sample of low-mass clusters, than it does for the sample of high-mass clusters. We interpret this finding as the result of the mixing of more haloes in large clusters than in small clusters, which leads to an averaging of the metal content in the large clusters, and thus less dispersion of metallicity for high-mass clusters. This interpretation lends support to the idea that the low-entropy, metal-rich gas of merging haloes reaches clusters' centers, which explains observations of Core-Collapse Supernova products metallicity peaks, and which is seen in hydrodynamical simulations. The gas in these merging haloes would have to reach the centers of clusters without mixing in the outer regions, in order to support our interpretation. On the other hand, metallicity dispersion does not change with mass in the outer regions of clusters, suggesting that most of the outer metals come from a source with a more uniform metallicity level, such as during pre-enrichment. We also measure a correlation between the metal content in low-mass clusters and the degree to which their Intra-Cluster Medium (ICM) is morphologically disturbed, as measured by centroid shift. This suggests an alternative interpretation of the large width of the metallicity distribution in low-mass clusters, whereby a metallicity boost in the center of low-mass clusters is induced as a transitional state, during mergers.