Highlights
DAC can help deal with difficult to avoid emissions. Large-scale deployment of DAC requires serious government, private, and corporate support and investment particularly to offset the capital cost as well as operational costs. Further optimizations to the costs can be found in choice of energy source as well as advances in CO2 capture technology such as high capacity and selectivity materials, faster reaction kinetics, and ease of reusability.
Abstract
Direct air capture (DAC) technologies are receiving increasing attention from the scientific community, commercial enterprises, policymakers and governments. While deep decarbonization of all sectors is required to meet the Paris Agreement target, DAC can help deal with difficult to avoid emissions (aviation, ocean-shipping, iron-steel, cement, mining, plastics, fertilizers, pulp and paper). While large-scale deployment of DAC discussions continues, a closer look to the capital and operational costs, different capture technologies, the choice of energy source, land and water requirements, and other environmental impacts of DAC are reviewed and examined. Cost per ton of CO2 captured discussions of leading industrial DAC developers with their carbon capture technologies are presented, and their detailed cost comparisons are evaluated based on the choice of energy operation together with process energy requirements. Validation of two active plants’ net negative emission contributions after reducing their own carbon footprint is presented. Future directions and recommendations to lower the current capital and operational costs of DAC are given. In view of large-scale deployment of DAC, and the considerations of high capital costs, private investments, government initiatives, net zero commitments of corporations, and support from the oil companies combined will help increase carbon capture capacity by building more DAC plants worldwide.
Graphic abstract