We report the synthesis and structural characterization of two coordination polymers (CPs), namely; [{Zn-(L) 6 -di(pyridin-4-yl)naphthalene-2,6-dicarboxamide). Crystal packing of 1 reveals the existence of channels running along the b-and c-axis filled by the ligated DMF and lattice anions, respectively. Whereas, crystal packing of 2 reveals that the metallacycles of each 1D chain are intercalating into the groove of adjacent metallacycles resulting in the stacking of 1D loop-chains to form a sheet-like architecture. In addition, both 1 and 2 were exploited as multifunctional materials for the detection of nitroaromatic compounds (NACs) as well as a catalyst in the ipso-hydroxylation of aryl/heteroarylboronic acids. Remarkably, 1 and 2 showed high fluorescence stability in an aqueous medium and displayed a maximum 88% and 97% quenching efficiency for 4-NPH, respectively among all the investigated NACs. The mechanistic investigation of NACs recognition suggested that the fluorescence quenching occurred via electron as well as energy transfer process. Furthermore, the ipso-hydroxylation of aryl/heteroarylboronic acids in presence of 1 and 2 gave up to 99% desired product yield within 15 min in our established protocol. In both cases, 1 and 2 are recyclable upto five cycles without any significant loss in their efficiency.