A novel catalyst-free and maskless growth approach is presented to form an ordered geometrical array of three-dimensional (3D) AlGaN/AlN microrods. The growth method is composed of a single growth step using metalorganic vapor phase epitaxy, achieving microstructures with homogeneous diameters, shapes and sizes over relatively large scale (on 2-in. wafer). The 3D AlGaN/AlN heterostructures are grown in a form of micro-sized columns elongated in one direction perpendicular to the substrate surface and with a hexagonal cross section. A careful examination of growth steps revealed that this technology allows to suppress coalescence and lateral overgrowth, promoting vertical 3D growth. Interestingly, two distinct morphologies can be obtained: honeycomb-like hexagonal arrangement perfectly packed and with twisted microrods layout, by controlling strain state in AlN buffer layers. Consequently, 3D AlGaN microrods on tensile-strained AlN templates show a 0° twisted morphology, while on compressive-strained templated a 30° twisted arrangement. Moreover, the optical and crystalline quality studies revealed that the top AlGaN layers of the examined 3D semiconductor structures are characterized by a low native point-defect concentration. These 3D AlGaN platforms can be applied for light emitting devices or sensing applications.
Graphic abstract