Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg -1 ), roots (964 mg kg -1) and entire plants (1,106 mg kg -1 ). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha -1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation. , respectivamente, quando cultivadas em Neossolo. Ambas as espécies apresentaram características hiperacumuladoras de cobre. Os resultados mostraram que estas espécies desempenham um papel importante na fitoacumulação de cobre naturalmente em ambos os solos de vitivinicultura contaminados com cobre, sendo importantes para a fitorremediação.
KeywordsPalavras-chave: Bidens pilosa, areas contaminadas com cobre, fitoacumulação de cobre, Plantago lanceolata.