The article introduces a two‐level finite element model for metallic scaffolds with porosity at both design and material levels. Despite several additive manufacturing methods producing structures with controlled hierarchical porosity, their functional properties remain largely unknown, hindering industrial utilization. This article examines how material microporosity affects the mechanical properties of a scaffold prepared by direct ink writing from pure titanium with dimensions typical for orthopedic implants. The study focuses on the compressive response of scaffolds with microporosity ranging from 0.05 to 0.65. The article demonstrates the practical application of the model by estimating the effective Young's modulus and the relative length of the fatigue crack initiation stage. Tensile plastic strains at critical sites exhibit a delocalization from around micropores followed by relocalization into thinning interpore walls with increasing microporosity, resulting in the highest fracture strain predicted for microporosities between 0.2 and 0.3. These strains enable the estimation of the length of the fatigue crack initiation stage, which proves to be very short for all microporosities. This emphasizes the crucial role of the crack growth stage in scaffold fatigue life and confirms the potential for additional experiments on scaffolds with microporosities exceeding 0.15 to enhance their fatigue resistance.