A comparative analysis of three advanced architectures for tandem solar cells (SCs) is discussed, respectively: metal oxide, thin film, and perovskite. Plasmonic solar cells could further increase solar cell efficiency. Using this development, an innovative PV technology (an SHTSC based on metal oxides) represented by a four-terminal Cu2O/c-Si tandem heterojunction solar cell is investigated. The experimental and numerical modelling study defines the main aim of this paper. The experimental approach to SHTSCs is analysed: (1) a Cu2O layer is deposited using a magnetron sputtering system; (2) the morphological and optical characterization of Cu2O thin films is studied. The electrical modelling of silicon heterojunction tandem solar cells (SHTSCs) is discussed based on five simulation tools for the optimized performance evaluation of solar devices. The main novelty of this paper is represented by the following results: (1) the analysis suggests that the incorporation of a buffer layer can improve the performance of a tandem heterojunction solar cell; (2) the effect of interface defects on the electrical characteristics of the AZO/Cu2O heterojunction is discussed; (3) the stability of SHTSCs based on metal oxides is studied to highlight the degradation rate in order to define a reliable solar device. Perspectives on SHTSCs based on metal oxides, as well as Si perovskite tandem solar cells with metal oxides as carrier-selective contacts, are commented on.