Nna1 is a recently described gene product that has sequence similarity with metallocarboxypeptidases. In the present study, five additional Nna1-like genes were identified in the mouse genome and named cytosolic carboxypeptidase (CCP) 2 through 6. Modeling suggests that the carboxypeptidase domain folds into a structure that resembles metallocarboxypeptidases of the M14 family, with all necessary residues for catalytic activity and broad substrate specificity. All CCPs are abundant in testis and also expressed in brain, pituitary, eye, and other mouse tissues. In brain, Nna1/CCP1, CCP5, and CCP6 are broadly distributed, whereas CCP2 and 3 exhibit restricted patterns of expression. Nna1/CCP1, CCP2, CCP5, and CCP6 were found to exhibit a cytosolic distribution, with a slight accumulation of CCP5 in the nucleus. Based on the above results, we hypothesized that Nna1/CCP1 and CCP2-6 function in the processing of cytosolic proteins such as alpha-tubulin, which is known to be modified by the removal of a C-terminal tyrosine. Analysis of the forms of alpha tubulin in the olfactory bulb of mice lacking Nna1/CCP1 showed the absence of the detyrosinylated form in the mitral cells. Taken together, these results are consistent with a role for Nna1/CCP1 and the related CCPs in the processing of tubulin.