Metallurgical Copper Recovery Prediction Using Conditional Quantile Regression Based on a Copula Model
Heber Hernández,
Martín Díaz-Viera,
Elisabete Alberdi
et al.
Abstract:This article proposes a novel methodology for estimating metallurgical copper recovery, a critical feature in mining project evaluations. The complexity of modeling this nonadditive variable using geostatistical methods due to low sampling density, strong heterotopic relationships with other measurements, and nonlinearity is highlighted. As an alternative, a copula-based conditional quantile regression method is proposed, which does not rely on linearity or additivity assumptions and can fit any statistical di… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.