Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The study aimed to ascertain the levels of trace elements present in the face powders marketed in Ghana. Fifteen different brands of facial makeup powders were purchased from a local market in Ghana. The samples were analyzed using an X-ray fluorescence (XRF) analyzer to determine the concentrations of 16 elements (Pb, As, Hg, Zn, Fe, Mn, Cr, Ti, Cu, Ni, Co, Sb, Cd, Ag, Sn, and Au). The contents of the trace elements were ordered in the following descending order according to the maximum concentrations: Fe > Zn > Ti > Mn > Cr > Hg > As > Pb > Cu, Ni, Co, Sb, Cd, Ag, Sn, and Au. Pearson correlation statistics showed strong positive relationships between Pb and Zn (r = 0.71), Pb and Cr (r = 0.57), Hg and Zn (r = 0.63), Hg and Fe (r = 0.73), Hg and Cr (r = 0.61), Zn and Fe (r = 0.69), Zn and Cr (r = 0.88), Fe and Cr (r = 0.67), and Fe and Ti (r = 0.62). Except for Pb and Cr, all the other elements had their margin of safety (MOS) values less than 100. The hazard indices (HIs) for Pb, Mn, Cr, and Ti were less than 1, indicating no risk. However, the HIs for As, Hg, Zn, and Fe were more than 1, indicating a potential risk of usage in adults. As a result, using face powders could put users at risk of exposure to trace elements. Dermal exposure to trace elements from cosmetics resulted in a lifetime cancer risk (LCR) that was higher than what was considered tolerable (LCR >10−6) due to the presence of Pb, As, and Cr. Mercury was identified as a potential skin sensitizer in the cosmetic samples examined by an exposure-based sensitization quantitative risk assessment (SQRA).
The study aimed to ascertain the levels of trace elements present in the face powders marketed in Ghana. Fifteen different brands of facial makeup powders were purchased from a local market in Ghana. The samples were analyzed using an X-ray fluorescence (XRF) analyzer to determine the concentrations of 16 elements (Pb, As, Hg, Zn, Fe, Mn, Cr, Ti, Cu, Ni, Co, Sb, Cd, Ag, Sn, and Au). The contents of the trace elements were ordered in the following descending order according to the maximum concentrations: Fe > Zn > Ti > Mn > Cr > Hg > As > Pb > Cu, Ni, Co, Sb, Cd, Ag, Sn, and Au. Pearson correlation statistics showed strong positive relationships between Pb and Zn (r = 0.71), Pb and Cr (r = 0.57), Hg and Zn (r = 0.63), Hg and Fe (r = 0.73), Hg and Cr (r = 0.61), Zn and Fe (r = 0.69), Zn and Cr (r = 0.88), Fe and Cr (r = 0.67), and Fe and Ti (r = 0.62). Except for Pb and Cr, all the other elements had their margin of safety (MOS) values less than 100. The hazard indices (HIs) for Pb, Mn, Cr, and Ti were less than 1, indicating no risk. However, the HIs for As, Hg, Zn, and Fe were more than 1, indicating a potential risk of usage in adults. As a result, using face powders could put users at risk of exposure to trace elements. Dermal exposure to trace elements from cosmetics resulted in a lifetime cancer risk (LCR) that was higher than what was considered tolerable (LCR >10−6) due to the presence of Pb, As, and Cr. Mercury was identified as a potential skin sensitizer in the cosmetic samples examined by an exposure-based sensitization quantitative risk assessment (SQRA).
The use of cosmetic products is expanding globally, and with it, so is the range of chemical substances employed in their production. As a result, there is also a higher risk of intoxication, allergic reactions, prolonged chemical exposure, adverse effects, and indiscriminate use. Cosmetic products can contain more than 10,000 ingredients. Most users of synthetic cosmetics are unaware of the harmful effects if they even are. However, it is linked to many diseases like cancer, congenital disabilities, reproductive impairments, developmental systems, contact dermatitis, hair loss, lung damage, old age, skin diseases and reactions, allergies, and harm to human nails. Many beauty products also create a high demand for natural oils, leading to extensive and intensive cultivation, harming natural habitats through deforestation, and contaminating soil and water through pesticides and fertilizers. The adverse effects of hazardous substances in synthetic cosmetics extend beyond human health and influence ecosystems, air quality, and oceans. Thus, this review aims to assess the environmental and health impacts of cosmetics using published scientific articles. The study used a systematic review based on Scopus, Science Direct, Web databases, Scholar Google, and PubMed. The results of this review showed that the formulation of cosmetics until the disposal of their containers could adversely affect environmental and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.