Water pollution is a pressing global issue significantly affecting ecosystem health, biodiversity, and human well-being. While numerous studies have concentrated on toxic metals like cadmium, lead, and mercury, essential metals such as copper and zinc often receive less attention. This review focuses on the distribution and occurrence of copper and zinc in surface water, their accumulation in freshwater organisms, and potential strategies for mitigating the environmental pressure caused by these metals. Zinc concentrations in uncontaminated freshwater usually range from 3 to 12 μg∙L−1 and form low-bioavailable hydroxo-complexes that are especially stable in weak alkaline water. The zinc concentration trend globally is Europe > Africa > Asia > South America > North America. Conversely, copper concentrations vary from 0.2 to 5.5 µg∙L−1, with the order being Asia > Africa > South America > North America > Europe. Humic substances are the likely predominant ligands for copper in these environments. The accumulation of copper and especially zinc in freshwater animals may not be a reliable indicator of metal pollution due to potential metabolic regulation. Bioremediation approaches, including phytoremediation and biosorption using plants and microorganisms, show promise in addressing water contamination. Future research should emphasize advanced bioremediation methods, emission reduction strategies, and refined modeling techniques to predict pollution trends and evaluate remediation effectiveness.