“…It is an emerging field in NLP, with research still in relatively early stages. A variety of different machine-learning and statistical methods have been applied to the task, including clustering (Birke and Sarkar, 2006;Shutova et al, 2010;Shutova and Sun, 2013); topic models (Bethard et al, 2009;Heintz et al, 2013); topical structure and imageability analysis (Strzalkowski et al, 2013); semantic similarity graphs , and feature-based classifiers (Gedigian et al, 2006;Li and Sporleder, 2009;Turney et al, 2011;Dunn, 2013a,b;Hovy et al, 2013;Mohler et al, 2013;Neuman et al, 2013;Tsvetkov et al, 2013Tsvetkov et al, , 2014Klebanov et al). Metaphor detection methods differ in how they define the task of metaphor detection-for instance, some algorithms seek to determine whether a phrase (such as sweet victory) is metaphorical (Krishnakumaran and Zhu, 2007;Turney et al, 2011;Tsvetkov et al, 2014;Bracewell et al, 2014;Gutiérrez et al, 2016), while others attempt to tag metaphoricity at the level of the utterance (Dunn, 2013a), or at the level of individual tokens in running text (Klebanov et al;Schulder and Hovy, 2014;Do Dinh and Gurevych, 2016).…”