The goal of argumentation mining, an evolving research field in computational
linguistics, is to design methods capable of analyzing people's argumentation.
In this article, we go beyond the state of the art in several ways. (i) We deal
with actual Web data and take up the challenges given by the variety of
registers, multiple domains, and unrestricted noisy user-generated Web
discourse. (ii) We bridge the gap between normative argumentation theories and
argumentation phenomena encountered in actual data by adapting an argumentation
model tested in an extensive annotation study. (iii) We create a new gold
standard corpus (90k tokens in 340 documents) and experiment with several
machine learning methods to identify argument components. We offer the data,
source codes, and annotation guidelines to the community under free licenses.
Our findings show that argumentation mining in user-generated Web discourse is
a feasible but challenging task.Comment: Cite as: Habernal, I. & Gurevych, I. (2017). Argumentation Mining in
User-Generated Web Discourse. Computational Linguistics 43(1), pp. 125-17