2022
DOI: 10.48550/arxiv.2205.15271
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

MetaSSD: Meta-Learned Self-Supervised Detection

Abstract: Deep learning-based symbol detector gains increasing attention due to the simple algorithm design than the traditional model-based algorithms such as Viterbi and BCJR. The supervised learning framework is often employed to predict the input symbols, where training symbols are used to train the model. There are two major limitations in the supervised approaches: a) a model needs to be retrained from scratch when new train symbols come to adapt to a new channel status, and b) the length of the training symbols n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?