The influence of casting temperatures on microstructures and mechanical properties of rapidly solidified Cu50Zr45.5Ti2.5Y2 alloy was investigated. With increasing casting temperatures, the amount of the crystalline phase decreases. At a high casting temperature, i.e., 1723 K, glass-forming ability (GFA) of the present alloy is enhanced. The results imply that adjusting the casting temperature could be used for designing the microstructures of bulk metallic glass matrix composite. Nanoindentation tests indicated that CuZr phases are slightly softer and can accommodate more plastic deformation than the amorphous matrix. Compression tests confirmed that this kind of second phase (CuZr) precipitated under lower casting temperatures helps to initiate multiple shear bands, resulting in a great improvement in mechanical properties of the samples. Our work indicates that casting temperatures have a great influence on GFA, microstructures, and mechanical properties of the rapidly solidified alloy, therefore controlling the casting temperature is crucial to the production of BMGs.