Graphene has extraordinary electro-optic properties and is therefore a promising candidate for monolithic photonic devices such as photodetectors. However, the integration of this atom-thin layer material with bulky photonic components usually results in a weak light-graphene interaction leading to large device lengths limiting electro-optic performance.In contrast, here we demonstrate a plasmonic slot graphene photodetector on silicon-oninsulator platform with high-responsivity given the 5 µm-short device length. We observe that the maximum photocurrent, and hence the highest responsivity, scales inversely with the slot gap width. Using a dual-lithography step, we realize 15 nm narrow slots that show a 15-times higher responsivity per unit device-length compared to photonic graphene photodetectors. Furthermore, we reveal that the back-gated electrostatics is overshadowed by channel-doping contributions induced by the contacts of this ultra-short channel graphene photodetector. This leads to quasi charge neutrality, which explains both the previously-unseen offset between the maximum photovoltaic-based photocurrent relative to graphene's Dirac point and the observed non-ambipolar transport. Such micrometer compact and absorption-efficient photodetectors allow for short-carrier pathways in nextgeneration photonic components, while being an ideal testbed to study short-channel carrier physics in graphene optoelectronics.
Introduction.Graphene has become a complementary platform for electronics and optoelectronics because of its remarkable properties and versatility(1). A variety of applications exploit graphene's peculiar features to include modulators(2), plasmonic optoelectronics(3-6), photovoltaic devices (7), ultrafast lasers (8), and photo-detection(9, 10). For photo conversion applications the linear and gap-less band structure of graphene results in wavelength-independent absorption (11,12).Moreover, graphene's carrier can be tuned via electrostatically doping, thus modulating light absorption. Due to its superb carrier mobility (13,14), graphene-based absorption enables ultrafast conversion of photons or plasmons to electrical currents or voltages. However, the light-graphene interaction, and consequently the responsivity of graphene-based devices, is usually rather weak due to the geometrical mismatch between graphene's atom-thin thickness and the diffractionlimited optical mode area of photonic components.The first-generation of graphene-based free-space photodetectors (PDs) uses metal-graphenemetal structures(14); choosing different work-functions for the source-and drain contacts results in an asymmetric band structure, thus enabling non-biased band-bending for charge polarity separation, leading to near-zero dark current. Interdigitated metallic contacts, are typically adopted
Corresponding AuthorVolker Sorger, sorger@gwu.edu
Funding SourcesVS is funded by AFOSR (FA9550-17-1-0377) and ARO (W911NF-16-2-0194).