A real-time, weather adaptive, dual-resolution, hybrid Warn-on-Forecast (WoF) analysis and forecast system using the WRF-ARW forecast model has been developed and implemented. The system includes two components, an ensemble analysis and forecast component, and a deterministic hybrid three-dimensional ensemble–variational (3DEnVAR) analysis and forecast component. The goal of the system is to provide on-demand, ensemble-based, and physically consistent gridded analysis and forecast products to forecasters for making warning decisions. Both components, the WRF-DART system with 36 ensemble members and the hybrid 3DEnVAR system, assimilate radar data, satellite-retrieved cloud water path, and surface observations at 15-min intervals with dual-resolution capability. In the current hybrid configuration, one-way coupling of the two analysis systems is performed: ensemble covariances derived from the WRF-DART system are incorporated into the hybrid 3DEnVAR system with each data assimilation (DA) cycle. This study examines deterministic, 3-h forecasts launched from the hybrid 3DEnVAR analyses every 30 min for three severe weather events in 2017. The performance of the deterministic component is evaluated for four configurations: dual-resolution coupling, single-resolution coupling, forecasts initialized using a cloud analysis for reflectivity assimilation, and forecasts initialized from the WRF-DART ensemble mean. Quantitative and subjective evaluation of composite reflectivity and updraft helicity (UH) swath forecasts for the three events indicate that the dual-resolution strategy without the cloud analysis performs best among the four configurations and provides the most realistic prediction of reflectivity patterns and UH tracks.