Solar energetic particle (SEP) events, originating from solar flares and Coronal Mass Ejections, present significant hazards to space exploration and technology on Earth. Accurate prediction of these high‐energy events is essential for safeguarding astronauts, spacecraft, and electronic systems. In this study, we conduct an in‐depth investigation into the application of multimodal data fusion techniques for the prediction of high‐energy SEP events, particularly ∼100 MeV events. Our research utilizes six machine learning (ML) models, each finely tuned for time series analysis, including Univariate Time Series (UTS), Image‐based model (Image), Univariate Feature Concatenation (UFC), Univariate Deep Concatenation (UDC), Univariate Deep Merge (UDM), and Univariate Score Concatenation (USC). By combining time series proton flux data with solar X‐ray images, we exploit complementary insights into the underlying solar phenomena responsible for SEP events. Rigorous evaluation metrics, including accuracy, F1‐score, and other established measures, are applied, along with K‐fold cross‐validation, to ensure the robustness and generalization of our models. Additionally, we explore the influence of observation window sizes on classification accuracy.