Methane (CH4) and nitrous oxide (N2O) are important greenhouse gases causing global warming and climate change. Efforts were made to analyze the CH4 and N2O flux in relation to plant and soil factors from rice (Oryza sativa L.) paddy. Ten popularly grown rice varieties namely Rashmisali, Bogajoha, Basmuthi, Lalkalamdani, Choimora (traditional varieties); Mahsuri, Moniram, Kushal, Gitesh and Profulla (high yielding varieties = HYV) were grown during monsoon season of July 2006. The CH4 and N2O emissions were measured the date of transplanting onwards at weekly interval along with soil and plant parameters. The seasonal integrated CH4 and N2O emission (Esif) from rice ranged from 8.13 g m(-2) to 13.00 g m(-2) and 121.63 mg N2O-N m(-2) to 189.46 mg N2O-N m(-2), respectively. Variety Gitesh emitted less N2O and CH4 amongst all the rice varieties. Both CH4 and N2O emission exhibited a significant positive correlation with leaf area, leaf number, tiller number and root dry weight. Soil organic carbon of the experimental field was associated with both CH4 and N2O emission whereas nitrate-N content of soil was associated with N2O emission. Methane emission showed significant positive correlations with soil temperature and crop photosynthetic rate. Traditional rice varieties with profuse vegetative growth recorded higher CH4 and N2O fluxes compared to HYVs. Gitesh and Kushal having low seasonal CH4 and N2O emission with higher yield potential can be recommended as low greenhouse gas emitting rice varieties.