A synchronous carbon‐coating and interfacial‐functionalizing approach is proposed for the fabrication of Mo‐doped MoxTi1−xO2‐δ nanotubes (C@IF‐MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo‐doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one‐dimensional (1D) structure with crystalline an anatase/rutile mixed‐phase TiO2 core and Mo‐functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF‐MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo‐functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed‐phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF‐MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.