The present study was designed to characterize methicillin-resistant staphylococci from raw meat. A total of 126 meat samples were obtained from open markets between February and April, 2015. Antimicrobial susceptibility testing was carried out using the disc diffusion method. Molecular profiling was conducted using 16S rRNA, mecA, nuc, and PVL gene signatures were detected by polymerase chain reaction assay. Fifty isolates of methicillin-resistant Staphylococcus spp. were detected in 26 (52%) pork, 14 (28%) beef and 10 (20%) chicken samples. The staphylococcal isolates were identified through partial 16S ribosomal ribonucleic acid (16S rRNA) nucleotide sequencing, and BLAST analysis of the gene sequence revealed 98%–100% staphylococcal similarity. All isolates from beef and chicken samples amplified the mecA gene, while 100% of the MRSA isolates amplified the PVL gene. The multidrug resistance profile (resistant to ≥1 antimicrobial agent in ≥3 classes of antimicrobial agents) of the staphylococcal isolates showed that 7 isolates were resistant to methicillin, penicillin, clindamycin, chloramphenicol, trimethoprim-sulfamethoxazole, kanamycin, amoxicillin, cloxacillin, erythromycin, vancomycin, and gentamycin. There was a significant regression effect from the multidrug-resistant profile on the number of isolates (p < 0.05) suggesting a consequence of the dissemination of resistant strains within bacterial populations. The findings of the present study indicate that raw meats in the Benin metropolis were possibly contaminated with pathogenic and multi-drug resistant staphylococci strains and therefore could constitute a risk to public health communities.