As the most common synthetic fibre, polyester has consistently been in high demand and usage, but its recycling has always been a problem for the textile industry. The decolorisation of dyed polyester is the key to expanding its recycling use, and there is no rapid, effective and simple decolorisation method. In this study, ozone was used to decolorise dispersed dyes developed for polyester. Ozone was effective in decolorising CI Disperse Orange 30 and CI Disperse Blue 60, and the process was extended to the decolorisation of dyed polyester fabric. Based on single factor analysis, the optimum decolorisation technological conditions were: an ozone feed rate of 130 mg L−1 min−1, treatment time of 2 hours, wet pick‐up of 100% and pH value of 3, with which the decolorisation rate and colour difference values could exceed 45% and 6%, respectively. The changes in dye structure during the process of ozone decolorisation were analysed using scanning electron microscopy, X‐ray diffraction and Fourier Transform–infrared spectroscopy, and the mechanism of ozone decolorisation was also investigated. The results showed that the crystallinity decreased from 41.18% to 36.30% with a strength retention rate of above 80%, and demonstrated that ozone can be used on polyester fabric and dye simultaneously. The aim of entering the fibre was achieved by etching the polyester and decolorisation was achieved by oxidising the chromaticity groups.