PurposeComparison of imaging measurement devices in the absence of a gold-standard comparator remains a vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and statistically robust method to evaluate the agreement between two methods with replicated observations. Consequently, we sought to determine, using an previously reported head and neck positional verification dataset, the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy’s linear mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT method comparison.MethodsAn anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX) imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y) and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method (within-subject variation), and overall agreement using with a script implementing COM3PARE with the MIXED procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA).ResultsCOM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT and KVX was observed in the Z-axis (both p − value<0.01). Intra-method and overall agreement differences were noted as statistically significant for both the X- and Z-axes (all p − value<0.01). Using pre-specified criteria, based on intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for superoinferior alignment.ConclusionsThe COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other anatomic sites or IGRT platforms.