The study aimed to develop a new reverse-phase high-performance liquid chromatography (RP-HPLC) method with diode array detection (DAD) detection for simultaneous estimation of escitalopram (EST) and clonazepam (CZP) in tablet dosage forms with a quality by design (QbD) approach. The chromatographic conditions were optimized by Box-Behnken design (BBD) and developed method was validated for the linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability according to International Council for Harmonization (ICH) guidelines. EST and CZP standard drugs peaks were separated at retention times of 2.668 and 5.046 min by C-18 column with dimension of 4.6 × 100 mm length and particle size packing 2.5 µm. The mobile phase was methanol: 0.1% orthophosphoric acid (OPA) (25:75, v/v), with a flow rate of 0.7 mL/min at temperature of 26 °C. The sample volume injected was 20 µL and peaks were detected at 239 nm. Using the standard calibration curve, the % assay of marketed tablet was founded 98.89 and 98.76 for EST and CZP, respectively. The proposed RP-HPLC method was able to detect EST and CZP in the presence of their degradation products, indicating the stability-indicating property of the developed RP-HPLC method. The validation parameter’s results in terms of linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability were in an acceptable range as per the ICH guidelines. The newly developed RP-HPLC method with QbD application is simple, accurate, time-saving, and economic.