Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune ailment that impacts multiple bodily systems and manifests with varied clinical manifestations. Early detection is considered the most effective way to save patients’ lives, but detecting severe SLE activity in its early stages is proving to be a formidable challenge. Consequently, this work advocates the use of Machine Learning (ML) algorithms for the diagnosis of SLE flares in the context of infections. In the pursuit of this research, the Random Forest (RF) method has been employed due to its performance attributes. With RF, our objective is to uncover patterns within the patient data. Multiple ML techniques have been scrutinized within this investigation. The proposed system exhibited around a 7.49% enhancement in accuracy when compared to k-Nearest Neighbors (KNN) algorithm. In contrast, the Support Vector Machine (SVM), Binary Linear Discriminant Analysis (BLDA), Decision Trees (DT) and Linear Regression (LR) methods demonstrated inferior performance, with respective values around 81%, 78%, 84% and 69%. It is noteworthy that the proposed method displayed a superior area under the curve (AUC) and balanced accuracy (both around 94%) in comparison to other ML approaches. These outcomes underscore the feasibility of crafting an automated diagnostic support method for SLE patients grounded in ML systems.