Anode heel effects are known to cause non-uniform image quality, but no method has been proposed to evaluate the non-uniform image quality caused by the heel effect. Therefore, the purpose of this study was to evaluate non-uniform image quality in digital radiographs using a novel circular step-wedge (CSW) phantom and normalized mutual information (nMI). All X-ray images were acquired from a digital radiography system equipped with a CsI flat panel detector. A new acrylic CSW phantom was imaged ten times at various kVp and mAs to evaluate overall and non-uniform image quality with nMI metrics. For comparisons, a conventional contrast-detail resolution phantom was imaged ten times at identical exposure parameters to evaluate overall image quality with visible ratio (VR) metrics, and the phantom was placed in different orientations to assess non-uniform image quality. In addition, heel effect correction (HEC) was executed to elucidate the impact of its effect on image quality. The results showed that both nMI and VR metrics significantly changed with kVp and mAs, and had a significant positive correlation. The positive correlation is suggestive that the nMI metrics have a similar performance to the VR metrics in assessing the overall image quality of digital radiographs. The nMI metrics significantly changed with orientations and also significantly increased after HEC in the anode direction. However, the VR metrics did not change significantly with orientations or with HEC. The results indicate that the nMI metrics were more sensitive than the VR metrics with regards to non-uniform image quality caused by the anode heel effect. In conclusion, the proposed nMI metrics with a CSW phantom outperformed the conventional VR metrics in detecting non-uniform image quality caused by the heel effect, and thus are suitable for quantitatively evaluating non-uniform image quality in digital radiographs with and without HEC.