Autonomous unmanned vehicles can successfully solve a variety of civil, scientific and military tasks. Robotic complexes of this class demonstrate their high efficiency when performing seismic surveys, hydrochemical monitoring of water areas and inspection of technical facilities of various purposes. Vehicles powered by a rechargeable battery, as a rule, have a very limited power reserve, and require periodic replenishment of the battery charge. The physical properties of the operating environment impose significant limitations on the communication methods used, which complicates the transfer of information between the operator and an autonomous unmanned submersible. Delivery of the vehicle to the mission site, as well as providing power to the vehicle and information exchange with the operator require some additional infrastructure. This paper focuses on finding and selecting solutions for transportation, power and communications support for autonomous underwater vehicles. The constructional solutions of underwater docks and general principles of building systems for ensuring the operation of this type of vehicles are considered, and a classification of approaches to the energy supply of underwater vehicles is made. Based on the analysis the most perspective solutions ensuring long-term autonomous operation were selected. Docking stations with the ability to lift and dive an underwater vehicle directly inside the station have a number of operational advantages. The use of contact methods for energy and information transfer requires high accuracy of underwater vehicle positioning and complication of its sensor system, as well as application of special methods for protection of contact pairs from environmental impacts. These disadvantages are deprived by wireless solutions, which are actively introduced at present.